幫忙總結(jié)下上海高中數(shù)學里的所有公式...
高中的數(shù)學公式定理大集中
1 過兩點有且只有一條直線
2 兩點之間線段最短
3 同角或等角的補角相等
4 同角或等角的余角相等
5 過一點有且只有一條直線和已知直線垂直
6 直線外一點與直線上各點連接的所有線段中,垂線段最短
7 平行公理 經(jīng)過直線外一點,有且只有一條直線與這條直線平行
8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9 同位角相等,兩直線平行
10 內(nèi)錯角相等,兩直線平行
11 同旁內(nèi)角互補,兩直線平行
12兩直線平行,同位角相等
13 兩直線平行,內(nèi)錯角相等
14 兩直線平行,同旁內(nèi)角互補
15 定理 三角形兩邊的和大于第三邊
16 推論 三角形兩邊的差小于第三邊
17 三角形內(nèi)角和定理 三角形三個內(nèi)角的和等于180°
18 推論1 直角三角形的兩個銳角互余
19 推論2 三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和
20 推論3 三角形的一個外角大于任何一個和它不相鄰的內(nèi)角
21 全等三角形的對應邊、對應角相等
22邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等
23 角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個三角形全等
24 推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等
25 邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等
26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等
27 定理1 在角的平分線上的點到這個角的兩邊的距離相等
28 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上
29 角的平分線是到角的兩邊距離相等的所有點的集合
30 等腰三角形的性質(zhì)定理 等腰三角形的兩個底角相等 (即等邊對等角)
31 推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊
32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33 推論3 等邊三角形的各角都相等,并且每一個角都等于60°
34 等腰三角形的判定定理 如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)
35 推論1 三個角都相等的三角形是等邊三角形
36 推論 2 有一個角等于60°的等腰三角形是等邊三角形
37 在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半
38 直角三角形斜邊上的中線等于斜邊上的一半
39 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等 ?
40 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42 定理1 關(guān)于某條直線對稱的兩個圖形是全等形
43 定理 2 如果兩個圖形關(guān)于某直線對稱,那么對稱軸是對應點連線的垂直平分線
44定理3 兩個圖形關(guān)于某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上
45逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱
46勾股定理 直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^2
47勾股定理的逆定理 如果三角形的三邊長a、b、c有關(guān)系a^2+b^2=c^2 ,那么這個三角形是直角三角形
48定理 四邊形的內(nèi)角和等于360°
49四邊形的外角和等于360°
50多邊形內(nèi)角和定理 n邊形的內(nèi)角的和等于(n-2)×180°
作者: 狗董s佛珠 2006-10-29 17:32 回復此發(fā)言
--------------------------------------------------------------------------------
2 回復:高中所有數(shù)學公式定理
51推論 任意多邊的外角和等于360°
52平行四邊形性質(zhì)定理1 平行四邊形的對角相等
53平行四邊形性質(zhì)定理2 平行四邊形的對邊相等
54推論 夾在兩條平行線間的平行線段相等
55平行四邊形性質(zhì)定理3 平行四邊形的對角線互相平分
56平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形
57平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形
58平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形
59平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形
60矩形性質(zhì)定理1 矩形的四個角都是直角
61矩形性質(zhì)定理2 矩形的對角線相等
62矩形判定定理1 有三個角是直角的四邊形是矩形
63矩形判定定理2 對角線相等的平行四邊形是矩形
64菱形性質(zhì)定理1 菱形的四條邊都相等
65菱形性質(zhì)定理2 菱形的對角線互相垂直,并且每一條對角線平分一組對角
66菱形面積=對角線乘積的一半,即S=(a×b)÷2
67菱形判定定理1 四邊都相等的四邊形是菱形
68菱形判定定理2 對角線互相垂直的平行四邊形是菱形
69正方形性質(zhì)定理1 正方形的四個角都是直角,四條邊都相等
70正方形性質(zhì)定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角
71定理1 關(guān)于中心對稱的兩個圖形是全等的
72定理2 關(guān)于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分
73逆定理 如果兩個圖形的對應點連線都經(jīng)過某一點,并且被這一 點平分,那么這兩個圖形關(guān)于這一點對稱
74等腰梯形性質(zhì)定理 等腰梯形在同一底上的兩個角相等
75等腰梯形的兩條對角線相等
76等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形
77對角線相等的梯形是等腰梯形
78平行線等分線段定理 如果一組平行線在一條直線上截得的線段
相等,那么在其他直線上截得的線段也相等
79 推論1 經(jīng)過梯形一腰的中點與底平行的直線,必平分另一腰
80 推論2 經(jīng)過三角形一邊的中點與另一邊平行的直線,必平分第 三邊
81 三角形中位線定理 三角形的中位線平行于第三邊,并且等于它 的一半
82 梯形中位線定理 梯形的中位線平行于兩底,并且等于兩底和的 一半 L=(a+b)÷2 S=L×h
83 (1)比例的基本性質(zhì) 如果a:b=c:d,那么ad=bc
如果ad=bc,那么a:b=c:d wc呁/S∕?
84 (2)合比性質(zhì) 如果a/b=c/d,那么(a±b)/b=(c±d)/d
85 (3)等比性質(zhì) 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么
(a+c+…+m)/(b+d+…+n)=a/b
86 平行線分線段成比例定理 三條平行線截兩條直線,所得的對應 線段成比例
87 推論 平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例
88 定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那么這條直線平行于三角形的第三邊
89 平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例
90 定理 平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似
91 相似三角形判定定理1 兩角對應相等,兩三角形相似(ASA)
92 直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
93 判定定理2 兩邊對應成比例且夾角相等,兩三角形相似(SAS)
94 判定定理3 三邊對應成比例,兩三角形相似(SSS)
95 定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三 角形的斜邊和一條直角邊對應成比例,那么這兩個直角三角形相似
96 性質(zhì)定理1 相似三角形對應高的比,對應中線的比與對應角平 分線的比都等于相似比
97 性質(zhì)定理2 相似三角形周長的比等于相似比
98 性質(zhì)定理3 相似三角形面積的比等于相似比的平方
99 任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等 于它的余角的正弦值
100任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等 于它的余角的正切值
作者: 狗董s佛珠 2006-10-29 17:32 回復此發(fā)言
--------------------------------------------------------------------------------
3 回復:高中所有數(shù)學公式定理
101圓是定點的距離等于定長的點的集合
102圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合
103圓的外部可以看作是圓心的距離大于半徑的點的集合
104同圓或等圓的半徑相等
105到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半 徑的圓
106和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直 平分線
107到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
108到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距 離相等的一條直線
109定理 不在同一直線上的三點確定一個圓。
110垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
111推論1 ①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧
②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
112推論2 圓的兩條平行弦所夾的弧相等
113圓是以圓心為對稱中心的中心對稱圖形
114定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦 相等,所對的弦的弦心距相等
115推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩 弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等
116定理 一條弧所對的圓周角等于它所對的圓心角的一半
117推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
118推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所 對的弦是直徑
119推論3 如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形
120定理 圓的內(nèi)接四邊形的對角互補,并且任何一個外角都等于它 的內(nèi)對角
121①直線L和⊙O相交 d<r
②直線L和⊙O相切 d=r
③直線L和⊙O相離 d>r ?
122切線的判定定理 經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線
123切線的性質(zhì)定理 圓的切線垂直于經(jīng)過切點的半徑
124推論1 經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點
125推論2 經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心
126切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等, 圓心和這一點的連線平分兩條切線的夾角
127圓的外切四邊形的兩組對邊的和相等
128弦切角定理 弦切角等于它所夾的弧對的圓周角
129推論 如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等
130相交弦定理 圓內(nèi)的兩條相交弦,被交點分成的兩條線段長的積 相等
131推論 如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的 兩條線段的比例中項
132切割線定理 從圓外一點引圓的切線和割線,切線長是這點到割 線與圓交點的兩條線段長的比例中項
133推論 從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等
134如果兩個圓相切,那么切點一定在連心線上
135①兩圓外離 d>R+r ②兩圓外切 d=R+r
③兩圓相交 R-r<d<R+r(R>r) ?
④兩圓內(nèi)切 d=R-r(R>r) ⑤兩圓內(nèi)含d<R-r(R>r)
136定理 相交兩圓的連心線垂直平分兩圓的公*弦
137定理 把圓分成n(n≥3):
⑴依次連結(jié)各分點所得的多邊形是這個圓的內(nèi)接正n邊形
⑵經(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
138定理 任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓
139正n邊形的每個內(nèi)角都等于(n-2)×180°/n
140定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
141正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長
142正三角形面積√3a/4 a表示邊長
143如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應為 360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
144弧長計算公式:L=n兀R/180
145扇形面積公式:S扇形=n兀R^2/360=LR/2
146內(nèi)公切線長= d-(R-r) 外公切線長= d-(R+r)
乘法與因式分解
a^2-b^2=(a+b)(a-b)
a^3+b^3=(a+b)(a^2-ab+b^2)
a^3-b^3=(a-b(a^2+ab+b^2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b^2-4ac)/2a -b-√(b^2-4ac)/2a
根與系數(shù)的關(guān)系 X1+X2=-b/a X1*X2=c/a 注:韋達定理
判別式
b^2-4ac=0 注:方程有兩個相等的實根
b^2-4ac>0 注:方程有兩個不等的實根 ?
b^2-4ac<0 注:方程沒有實根,有共軛復數(shù)根
三角函數(shù)公式
兩角和公式
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-sinBcosA ?
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
cot(A+B)=(cotAcotB-1)/(cotB+cotA) ?
cot(A-B)=(cotAcotB+1)/(cotB-cotA)
高中數(shù)學基本公式
高中數(shù)學的所有公式總結(jié)
1.三角函數(shù)公式表
同角三角函數(shù)的基本關(guān)系式 ? ?
倒數(shù)關(guān)系: 商的關(guān)系: 平方關(guān)系: ? ?
tanα ·cotα=1 ?
sinα ·cscα=1 ?
cosα ·secα=1 sinα/cosα=tanα=secα/cscα ?
cosα/sinα=cotα=cscα/secα sin2α+cos2α=1 ?
1+tan2α=sec2α ?
1+cot2α=csc2α ? ?
(六邊形記憶法:圖形結(jié)構(gòu)“上弦中切下割,左正右余中間1”;記憶方法“對角線上兩個函數(shù)的積為1;陰影三角形上兩頂點的三角函數(shù)值的平方和等于下頂點的三角函數(shù)值的平方;任意一頂點的三角函數(shù)值等于相鄰兩個頂點的三角函數(shù)值的乘積。”)
誘導公式(口訣:奇變偶不變,符號看象限。) ? ?
sin(-α)=-sinα ?
cos(-α)=cosα tan(-α)=-tanα ?
cot(-α)=-cotα
sin(π/2-α)=cosα ?
cos(π/2-α)=sinα ?
tan(π/2-α)=cotα ?
cot(π/2-α)=tanα
sin(π/2+α)=cosα ?
cos(π/2+α)=-sinα ?
tan(π/2+α)=-cotα ?
cot(π/2+α)=-tanα
sin(π-α)=sinα ?
cos(π-α)=-cosα ?
tan(π-α)=-tanα ?
cot(π-α)=-cotα
sin(π+α)=-sinα ?
cos(π+α)=-cosα ?
tan(π+α)=tanα ?
cot(π+α)=cotα
sin(3π/2-α)=-cosα ?
cos(3π/2-α)=-sinα ?
tan(3π/2-α)=cotα ?
cot(3π/2-α)=tanα
sin(3π/2+α)=-cosα ?
cos(3π/2+α)=sinα ?
tan(3π/2+α)=-cotα ?
cot(3π/2+α)=-tanα
sin(2π-α)=-sinα ?
cos(2π-α)=cosα ?
tan(2π-α)=-tanα ?
cot(2π-α)=-cotα
sin(2kπ+α)=sinα ?
cos(2kπ+α)=cosα ?
tan(2kπ+α)=tanα ?
cot(2kπ+α)=cotα ?
(其中k∈Z)
兩角和與差的三角函數(shù)公式 萬能公式 ? ?
sin(α+β)=sinαcosβ+cosαsinβ ?
sin(α-β)=sinαcosβ-cosαsinβ ?
cos(α+β)=cosαcosβ-sinαsinβ ?
cos(α-β)=cosαcosβ+sinαsinβ
tanα+tanβ ?
tan(α+β)=—————— ?
1-tanα ·tanβ
tanα-tanβ ?
tan(α-β)=—————— ?
1+tanα ·tanβ ? ?
2tan(α/2) ?
sinα=—————— ?
1+tan2(α/2)
1-tan2(α/2) ?
cosα=—————— ?
1+tan2(α/2)
2tan(α/2) ?
tanα=—————— ?
1-tan2(α/2)
半角的正弦、余弦和正切公式 三角函數(shù)的降冪公式
二倍角的正弦、余弦和正切公式 三倍角的正弦、余弦和正切公式 ? ?
sin2α=2sinαcosα
cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α
2tanα ?
tan2α=————— ?
1-tan2α
sin3α=3sinα-4sin3α
cos3α=4cos3α-3cosα
3tanα-tan3α ?
tan3α=—————— ?
1-3tan2α
三角函數(shù)的和差化積公式 三角函數(shù)的積化和差公式 ? ?
α+β α-β ?
sinα+sinβ=2sin———·cos——— ?
2 2 ?
α+β α-β ?
sinα-sinβ=2cos———·sin——— ?
2 2 ?
α+β α-β ?
cosα+cosβ=2cos———·cos——— ?
2 2 ?
α+β α-β ?
cosα-cosβ=-2sin———·sin——— ?
2 2 1 ?
sinα ·cosβ=-[sin(α+β)+sin(α-β)] ?
2 ?
1 ?
cosα ·sinβ=-[sin(α+β)-sin(α-β)] ?
2 ?
1 ?
cosα ·cosβ=-[cos(α+β)+cos(α-β)] ?
2 ?
1 ?
sinα ·sinβ=— -[cos(α+β)-cos(α-β)] ?
2
化asinα ±bcosα為一個角的一個三角函數(shù)的形式(輔助角的三角函數(shù)的公式
集合、函數(shù)
集合 簡單邏輯 ?
任一x∈A x∈B,記作A B ?
A B,B A A=B ?
A B={x|x∈A,且x∈B} ?
A B={x|x∈A,或x∈B}
card(A B)=card(A)+card(B)-card(A B) ?
(1)命題 ?
原命題 若p則q ?
逆命題 若q則p ?
否命題 若 p則 q ?
逆否命題 若 q,則 p ?
(2)四種命題的關(guān)系 ?
(3)A B,A是B成立的充分條件 ?
B A,A是B成立的必要條件 ?
A B,A是B成立的充要條件
函數(shù)的性質(zhì) 指數(shù)和對數(shù) ?
(1)定義域、值域、對應法則 ?
(2)單調(diào)性 ?
對于任意x1,x2∈D ?
若x1<x2 f(x1)<f(x2),稱f(x)在D上是增函數(shù) ?
若x1<x2 f(x1)>f(x2),稱f(x)在D上是減函數(shù) ?
(3)奇偶性 ?
對于函數(shù)f(x)的定義域內(nèi)的任一x,若f(-x)=f(x),稱f(x)是偶函數(shù) ?
若f(-x)=-f(x),稱f(x)是奇函數(shù) ?
(4)周期性 ?
對于函數(shù)f(x)的定義域內(nèi)的任一x,若存在常數(shù)T,使得f(x+T)=f(x),則稱f(x)是周期函數(shù) (1)分數(shù)指數(shù)冪 ?
正分數(shù)指數(shù)冪的意義是
負分數(shù)指數(shù)冪的意義是
(2)對數(shù)的性質(zhì)和運算法則
loga(MN)=logaM+logaN
logaMn=nlogaM(n∈R)
指數(shù)函數(shù) 對數(shù)函數(shù) ?
(1)y=ax(a>0,a≠1)叫指數(shù)函數(shù) ?
(2)x∈R,y>0 ?
圖象經(jīng)過(0,1) ?
a>1時,x>0,y>1;x<0,0<y<1 ?
0<a<1時,x>0,0<y<1;x<0,y>1 ?
a> 1時,y=ax是增函數(shù) ?
0<a<1時,y=ax是減函數(shù) (1)y=logax(a>0,a≠1)叫對數(shù)函數(shù) ?
(2)x>0,y∈R ?
圖象經(jīng)過(1,0) ?
a>1時,x>1,y>0;0<x<1,y<0 ?
0<a<1時,x>1,y<0;0<x<1,y>0 ?
a>1時,y=logax是增函數(shù) ?
0<a<1時,y=logax是減函數(shù) ?
指數(shù)方程和對數(shù)方程 ?
基本型 ?
logaf(x)=b f(x)=ab(a>0,a≠1) ?
同底型 ? ?
logaf(x)=logag(x) f(x)=g(x)>0(a>0,a≠1) ?
換元型 f(ax)=0或f (logax)=0
數(shù)列
數(shù)列的基本概念 等差數(shù)列 ?
(1)數(shù)列的通項公式an=f(n) ?
(2)數(shù)列的遞推公式 ?
(3)數(shù)列的通項公式與前n項和的關(guān)系
an+1-an=d ?
an=a1+(n-1)d ?
a,A,b成等差 2A=a+b ?
m+n=k+l am+an=ak+al
等比數(shù)列 常用求和公式 ?
an=a1qn_1 ?
a,G,b成等比 G2=ab ?
m+n=k+l aman=akal
不等式
不等式的基本性質(zhì) 重要不等式 ?
a>b b<a ?
a>b,b>c a>c ?
a>b a+c>b+c ?
a+b>c a>c-b ?
a>b,c>d a+c>b+d ?
a>b,c>0 ac>bc ?
a>b,c<0 ac<bc ?
a>b>0,c>d>0 ac<bd ?
a>b>0 dn>bn(n∈Z,n>1) ?
a>b>0 > (n∈Z,n>1) ?
(a-b)2≥0 ?
a,b∈R a2+b2≥2ab
|a|-|b|≤|a±b|≤|a|+|b| ?
證明不等式的基本方法 ?
比較法 ?
(1)要證明不等式a>b(或a<b),只需證明 ?
a-b>0(或a-b<0=即可 ?
(2)若b>0,要證a>b,只需證明 , ?
要證a<b,只需證明 ?
綜合法 綜合法就是從已知或已證明過的不等式出發(fā),根據(jù)不等式的性質(zhì)推導出欲證的不等式(由因?qū)Ч┑姆椒ā??
分析法 分析法是從尋求結(jié)論成立的充分條件入手,逐步尋求所需條件成立的充分條件,直至所需的條件已知正確時為止,明顯地表現(xiàn)出“持果索因”
復數(shù)
代數(shù)形式 三角形式 ?
a+bi=c+di a=c,b=d
(a+bi)+(c+di)=(a+c)+(b+d)i ?
(a+bi)-(c+di)=(a-c)+(b-d)i ?
(a+bi)(c+di )=(ac-bd)+(bc+ad)i
a+bi=r(cosθ+isinθ) ?
r1=(cosθ1+isinθ1)?r2(cosθ2+isinθ2) ?
=r1?r2〔cos(θ1+θ2)+isin(θ1+θ2)〕 ?
〔r(cosθ+sinθ)〕n=rn(cosnθ+isinnθ)
k=0,1,……,n-1
解析幾何
1、直線 ?
兩點距離、定比分點 直線方程 ?
|AB|=| | ?
|P1P2|=
y-y1=k(x-x1) ?
y=kx+b
兩直線的位置關(guān)系 夾角和距離
或k1=k2,且b1≠b2 ?
l1與l2重合 ?
或k1=k2且b1=b2 ?
l1與l2相交 ?
或k1≠k2 ?
l2⊥l2 ?
或k1k2=-1 l1到l2的角
l1與l2的夾角
點到直線的距離
2.圓錐曲線 ?
圓 橢 圓 ?
標準方程(x-a)2+(y-b)2=r2 ?
圓心為(a,b),半徑為R ?
一般方程x2+y2+Dx+Ey+F=0 ?
其中圓心為( ), ?
半徑r ?
(1)用圓心到直線的距離d和圓的半徑r判斷或用判別式判斷直線與圓的位置關(guān)系 ?
(2)兩圓的位置關(guān)系用圓心距d與半徑和與差判斷 橢圓 ?
焦點F1(-c,0),F(xiàn)2(c,0) ?
(b2=a2-c2) ?
離心率 ?
準線方程 ?
焦半徑|MF1|=a+ex0,|MF2|=a-ex0 ?
雙曲線 拋物線 ?
雙曲線 ?
焦點F1(-c,0),F(xiàn)2(c,0) ?
(a,b>0,b2=c2-a2) ?
離心率 ?
準線方程 ?
焦半徑|MF1|=ex0+a,|MF2|=ex0-a 拋物線y2=2px(p>0) ?
焦點F ?
準線方程
坐標軸的平移
這里(h,k)是新坐標系的原點在原坐標系中的坐標
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
高中必背數(shù)學公式
高中數(shù)學公式是高考數(shù)學復習至關(guān)重要的知識點,為了幫助高三考生進行高考數(shù)學的復習。下面我給你分享高中必背數(shù)學公式,歡迎閱讀。
高中必背數(shù)學公式:一元二次方程的解
-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a
根與系數(shù)的關(guān)系x1+x2=-b/ax1*x2=c/a注:韋達定理
判別式b2-4a=0注:方程有相等的兩實根
b2-4ac>0注:方程有兩個不相等的個實根
b2-4ac<0注:方程有共軛復數(shù)根
高中必背數(shù)學公式:立體圖形及平面圖形的公式
圓的標準方程(x-a)2+(y-b)2=r2注:(a,b)是圓心坐標
圓的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0
拋物線標準方程y2=2pxy2=-2pxx2=2pyx2=-2py
直棱柱側(cè)面積S=c*h斜棱柱側(cè)面積S=c'*h
正棱錐側(cè)面積S=1/2c*h'正棱臺側(cè)面積S=1/2(c+c')h'
圓臺側(cè)面積S=1/2(c+c')l=pi(R+r)l球的表面積S=4pi*r2
圓柱側(cè)面積S=c*h=2pi*h圓錐側(cè)面積S=1/2*c*l=pi*r*l
弧長公式l=a*ra是圓心角的弧度數(shù)r>0扇形面積公式s=1/2*l*r
錐體體積公式V=1/3*S*H圓錐體體積公式V=1/3*pi*r2h
斜棱柱體積V=S'L注:其中,S'是直截面面積,L是側(cè)棱長
柱體體積公式V=s*h圓柱體V=pi*r2h
高中必背數(shù)學公式:圖形周長、面積、體積公式
長方形的周長=(長+寬)×2
正方形的周長=邊長×4
長方形的面積=長×寬
正方形的面積=邊長×邊長
三角形的面積
已知三角形底a,高h,則S=ah/2
已知三角形三邊a,b,c,半周長p,則S=√[p(p-a)(p-b)(p-c)](海倫公式)(p=(a+b+c)/2)
和:(a+b+c)*(a+b-c)*1/4
已知三角形兩邊a,b,這兩邊夾角C,則S=absinC/2
設三角形三邊分別為a、b、c,內(nèi)切圓半徑為r
則三角形面積=(a+b+c)r/2
設三角形三邊分別為a、b、c,外接圓半徑為r
則三角形面積=abc/4r
數(shù)學高中所有公式
數(shù)學高中公式:
1、基礎(chǔ)公式:
sin15°=cos75°=(√6-√2)/4
sin30°=cos60=1/2
sin45°=cos45°=√2/2
sin60=cos30°=√3/2
sin90°=cos0°=1
tan0°=0 tan30°=√3/3 tan45°=1 tan60°=√3
2、兩角和公式:
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-cosAsinB
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
3、倍角公式:
sin2A=2sinAcosA
cos2A=cos2A-sin2A=2cos2A-1=1-2sin2A
tan2A=2tanA/(1-tan2A)
4、同角三角函數(shù):
tanA=sinA/cosA
tanA×cotA=1
secA=1/cosA
cscA=1/sinA
1/cos2A=1+tan2A
sin2A+cos2A=1
5、特殊公式:
sin2A=(1-cos2A)/2
cos2A=(1+cos2A)/2
6、sin(-A)=?- sinA
tan(-A)=?- tanA
cos(-A)=?cosA
高中數(shù)學常用公式
高中數(shù)學常用公式有復數(shù)、函數(shù)、空間幾何體等。
1、復數(shù)。
復數(shù),是數(shù)的概念擴展。我們把形如z=a+bi(a、b均為實數(shù))的數(shù)稱為復數(shù)。其中,a稱為實部,b稱為虛部,i稱為虛數(shù)單位。當z的虛部b=0時,則z為實數(shù);當z的虛部b≠0時,實部a=0時,常稱z為純虛數(shù)。復數(shù)域是實數(shù)域的代數(shù)閉包,即任何復系數(shù)多項式在復數(shù)域中總有根。
復數(shù)是由意大利米蘭學者卡當在16世紀首次引入,經(jīng)過達朗貝爾、棣莫弗、歐拉、高斯等人的工作,此概念逐漸為數(shù)學家所接受。
2、函數(shù)。
函數(shù)(function),數(shù)學術(shù)語。其定義通常分為傳統(tǒng)定義和近代定義,函數(shù)的兩個定義本質(zhì)是相同的,只是敘述概念的出發(fā)點不同,傳統(tǒng)定義是從運動變化的觀點出發(fā),而近代定義是從集合、映射的觀點出發(fā)。
函數(shù)的近代定義是給定一個數(shù)集A,假設其中的元素為x,對A中的元素x施加對應法則f,記作f(x),得到另一數(shù)集B,假設B中的元素為y,則y與x之間的等量關(guān)系可以用y=f(x)表示,函數(shù)概念含有三個要素:定義域A、值域B和對應法則f。其中核心是對應法則f,它是函數(shù)關(guān)系的本質(zhì)特征。
3、空間幾何體。
在我們周圍存在著各種各樣的物體,它們都占據(jù)著空間的一部分。如果我們只考慮這些物體的形狀和大小,而不考慮其他因素,那么由這些物體抽象出來的空間圖形就叫做空間幾何體。
高中數(shù)學所有公式
學好數(shù)學的*步是“記住并深刻理解公式”,這樣在做題時才會有貨,以下是高中數(shù)學所有公式:
都是些最基礎(chǔ)的東西,學習好的同學可以看看自己有哪些點自己沒掌握好,基礎(chǔ)不好的同學可以嘗試把它抄下來,在學習過程中,沒事的時候拿出來翻翻看,絕對對你大有幫助。
1、適用條件[直線過焦點],必有ecosA=(x-1)/(x+1),其中A為直線與焦點所在軸夾角,是銳角。
x為分離比,必須大于1。注上述公式適合一切圓錐曲線。如果焦點內(nèi)分(指的是焦點在所截線段上),用該公式;如果外分(焦點在所截線段延長線上),右邊為(x+1)/(x-1),其他不變。????
2、函數(shù)的周期性問題(記憶三個):
(1)若f(x)=-f(x+k),則T=2k;(2)若f(x)=m/(x+k)(m不為0),則T=2k;(3)若f(x)=f(x+k)+f(x-k),則T=6k。
注意點:a.周期函數(shù),周期必無限;b.周期函數(shù)未必存在最小周期,如:常數(shù)函數(shù);c.周期函數(shù)加周期函數(shù)未必是周期函數(shù)。
3、關(guān)于對稱問題(無數(shù)人搞不懂的問題)總結(jié)如下:
(1)若在R上(下同)滿足:f(a+x)=f(b-x)恒成立,對稱軸為x=(a+b)/2;(2)函數(shù)y=f(a+x)與y=f(b-x)的圖像關(guān)于x=(b-a)/2對稱;(3)若f(a+x)+f(a-x)=2b,則f(x)圖像關(guān)于(a,b)中心對稱。
4、函數(shù)奇偶性:
(1)對于屬于R上的奇函數(shù)有f(0)=0;(2)對于含參函數(shù),奇函數(shù)沒有偶次方項,偶函數(shù)沒有奇次方項;(3)奇偶性作用不大,一般用于選擇填空。
5、常用數(shù)列bn=n×(22n)求和Sn=(n-1)×(22(n+1))+2記憶方法前面減去一個1,后面加一個,再整體加一個2。
6、適用于標準方程(焦點在x軸)公式:
k橢=-{(b2)x?}/{(a2)y?};k雙={(b2)x?}/{(a2)y?};k拋=p/y?。注:(x?,y?)均為直線過圓錐曲線所截段的中點。
7、強烈推薦一個兩直線垂直或平行的必殺技:
已知直線L?:a?x+b?y+c?=0?;直線L?:a?x+b?y+c?=0
若它們垂直:(充要條件)a?a?+b?b?=0;若它們平行:(充要條件)a?b?=a?b?且a?c?≠a?c?[這個條件為了防止兩直線重合]
8、積化和差:
sinαsinβ=[cos(α-β)-cos(α+β)]/2
cosαcosβ=[cos(α+β)+cos(α-β)]/2
sinαcosβ=[sin(α+β)+sin(α-β)]/2
cosαsinβ=[sin(α+β)-sin(α-β)]/2
*和高中數(shù)理化全部公式
002 *數(shù)學百度網(wǎng)盤資源免費下載?
鏈接:
?pwd=abq2 提取碼: abq2 ? ?002 *數(shù)學|5.5 小結(jié).pdf|5.4 .1 平移.pdf|5.3.1 ?平行線的性質(zhì).pdf|5.2.2 ?直線平行的條件.pdf|5.2.1 ?平行線.pdf|5.1.2 ?垂線.pdf|5.1.1 ?相交線.pdf|11.3角平分線的性質(zhì)4.pdf|11.3角平分線的性質(zhì)3.pdf|11.3角平分線的性質(zhì)2.pdf|11.3角平分線的性質(zhì)1.pdf|11.2 三角形全等的判定6.pdf|11.2 三角形全等的判定5.pdf|11.2 三角形全等的判定4.pdf
高中數(shù)學全部公式有哪些?
數(shù)學高考基礎(chǔ)知識、常見結(jié)論詳解
一、集合與簡易邏輯:
一、理解集合中的有關(guān)概念
(1)集合中元素的特征: 確定性 , 互異性 , 無序性 。
集合元素的互異性:如: , ,求 ;
(2)集合與元素的關(guān)系用符號 , 表示。
(3)常用數(shù)集的符號表示:自然數(shù)集 ;正整數(shù)集 、 ;整數(shù)集 ;有理數(shù)集 、實數(shù)集 。
(4)集合的表示法: 列舉法 , 描述法 , 韋恩圖 。
注意:區(qū)分集合中元素的形式:如: ; ; ; ; ;
;
(5)空集是指不含任何元素的集合。( 、 和 的區(qū)別;0與三者間的關(guān)系)
空集是任何集合的子集,是任何非空集合的真子集。
注意:條件為 ,在討論的時候不要遺忘了 的情況。
如: ,如果 ,求 的取值。
二、集合間的關(guān)系及其運算
(1)符號“ ”是表示元素與集合之間關(guān)系的,立體幾何中的體現(xiàn) 點與直線(面)的關(guān)系 ;
符號“ ”是表示集合與集合之間關(guān)系的,立體幾何中的體現(xiàn) 面與直線(面)的關(guān)系 。
(2) ; ;
(3)對于任意集合 ,則:
① ; ; ;
② ; ;
; ;
③ ; ;
(4)①若 為偶數(shù),則 ;若 為奇數(shù),則 ;
②若 被3除余0,則 ;若 被3除余1,則 ;若 被3除余2,則 ;
三、集合中元素的個數(shù)的計算:
(1)若集合 中有 個元素,則集合 的所有不同的子集個數(shù)為_________,所有真子集的個數(shù)是__________,所有非空真子集的個數(shù)是 。
(2) 中元素的個數(shù)的計算公式為: ;
(3)韋恩圖的運用:
四、 滿足條件 , 滿足條件 ,
若 ;則 是 的充分非必要條件 ;
若 ;則 是 的必要非充分條件 ;
若 ;則 是 的充要條件 ;
若 ;則 是 的既非充分又非必要條件 ;
五、原命題與逆否命題,否命題與逆命題具有相同的 ;
注意:“若 ,則 ”在解題中的運用,
如:“ ”是“ ”的 條件。
六、反證法:當證明“若 ,則 ”感到困難時,改證它的等價命題“若 則 ”成立,
步驟:1、假設結(jié)論反面成立;2、從這個假設出發(fā),推理論證,得出矛盾;3、由矛盾判斷假設不成立,從而肯定結(jié)論正確。
矛盾的來源:1、與原命題的條件矛盾;2、導出與假設相矛盾的命題;3、導出一個恒假命題。
適用與待證命題的結(jié)論涉及“不可能”、“不是”、“至少”、“至多”、“*”等字眼時。
正面詞語 等于 大于 小于 是 都是 至多有一個
否定
正面詞語 至少有一個 任意的 所有的 至多有n個 任意兩個
否定
二、函數(shù)
一、映射與函數(shù):
(1)映射的概念: (2)一一映射:(3)函數(shù)的概念:
如:若 , ;問: 到 的映射有 個, 到 的映射有 個; 到 的函數(shù)有 個,若 ,則 到 的一一映射有 個。
函數(shù) 的圖象與直線 交點的個數(shù)為 個。
二、函數(shù)的三要素: , , 。
相同函數(shù)的判斷方法:① ;② (兩點必須同時具備)
(1)函數(shù)解析式的求法:
①定義法(拼湊):②換元法:③待定系數(shù)法:④賦值法:
(2)函數(shù)定義域的求法:
① ,則 ; ② 則 ;
③ ,則 ; ④如: ,則 ;
⑤含參問題的定義域要分類討論;
如:已知函數(shù) 的定義域是 ,求 的定義域。
⑥對于實際問題,在求出函數(shù)解析式后;必須求出其定義域,此時的定義域要根據(jù)實際意義來確定。如:已知扇形的周長為20,半徑為 ,扇形面積為 ,則 ;定義域為 。
(3)函數(shù)值域的求法:
①配方法:轉(zhuǎn)化為二次函數(shù),利用二次函數(shù)的特征來求值;常轉(zhuǎn)化為型如: 的形式;
②逆求法(反求法):通過反解,用 來表示 ,再由 的取值范圍,通過解不等式,得出 的取值范圍;常用來解,型如: ;
④換元法:通過變量代換轉(zhuǎn)化為能求值域的函數(shù),化歸思想;
⑤三角有界法:轉(zhuǎn)化為只含正弦、余弦的函數(shù),運用三角函數(shù)有界性來求值域;
⑥基本不等式法:轉(zhuǎn)化成型如: ,利用平均值不等式公式來求值域;
⑦單調(diào)性法:函數(shù)為單調(diào)函數(shù),可根據(jù)函數(shù)的單調(diào)性求值域。
⑧數(shù)形結(jié)合:根據(jù)函數(shù)的幾何圖形,利用數(shù)型結(jié)合的方法來求值域。
求下列函數(shù)的值域:① (2種方法);
② (2種方法);③ (2種方法);
三、函數(shù)的性質(zhì):
函數(shù)的單調(diào)性、奇偶性、周期性
單調(diào)性:定義:注意定義是相對與某個具體的區(qū)間而言。
判定方法有:定義法(作差比較和作商比較)
導數(shù)法(適用于多項式函數(shù))
復合函數(shù)法和圖像法。
應用:比較大小,證明不等式,解不等式。
奇偶性:定義:注意區(qū)間是否關(guān)于原點對稱,比較f(x) 與f(-x)的關(guān)系。f(x) -f(-x)=0 f(x) =f(-x) f(x)為偶函數(shù);
f(x)+f(-x)=0 f(x) =-f(-x) f(x)為奇函數(shù)。
判別方法:定義法, 圖像法 ,復合函數(shù)法
應用:把函數(shù)值進行轉(zhuǎn)化求解。
周期性:定義:若函數(shù)f(x)對定義域內(nèi)的任意x滿足:f(x+T)=f(x),則T為函數(shù)f(x)的周期。
其他:若函數(shù)f(x)對定義域內(nèi)的任意x滿足:f(x+a)=f(x-a),則2a為函數(shù)f(x)的周期.
應用:求函數(shù)值和某個區(qū)間上的函數(shù)解析式。
四、圖形變換:函數(shù)圖像變換:(重點)要求掌握常見基本函數(shù)的圖像,掌握函數(shù)圖像變換的一般規(guī)律。
常見圖像變化規(guī)律:(注意平移變化能夠用向量的語言解釋,和按向量平移聯(lián)系起來思考)
平移變換 y=f(x)→y=f(x+a),y=f(x)+b
注意:(ⅰ)有系數(shù),要先提取系數(shù)。如:把函數(shù)y=f(2x)經(jīng)過 平移得到函數(shù)y=f(2x+4)的圖象。
(ⅱ)會結(jié)合向量的平移,理解按照向量 (m,n)平移的意義。
對稱變換 y=f(x)→y=f(-x),關(guān)于y軸對稱
y=f(x)→y=-f(x) ,關(guān)于x軸對稱
y=f(x)→y=f|x|,把x軸上方的圖象保留,x軸下方的圖象關(guān)于x軸對稱
y=f(x)→y=|f(x)|把y軸右邊的圖象保留,然后將y軸右邊部分關(guān)于y軸對稱。(注意:它是一個偶函數(shù))
伸縮變換:y=f(x)→y=f(ωx),
y=f(x)→y=Af(ωx+φ)具體參照三角函數(shù)的圖象變換。
一個重要結(jié)論:若f(a-x)=f(a+x),則函數(shù)y=f(x)的圖像關(guān)于直線x=a對稱;
如: 的圖象如圖,作出下列函數(shù)圖象:
(1) ;(2) ;
(3) ;(4) ;
(5) ;(6) ;
(7) ;(8) ;
(9) 。
五、反函數(shù):
(1)定義:
(2)函數(shù)存在反函數(shù)的條件: ;
(3)互為反函數(shù)的定義域與值域的關(guān)系: ;
(4)求反函數(shù)的步驟:①將 看成關(guān)于 的方程,解出 ,若有兩解,要注意解的選擇;②將 互換,得 ;③寫出反函數(shù)的定義域(即 的值域)。
(5)互為反函數(shù)的圖象間的關(guān)系: ;
(6)原函數(shù)與反函數(shù)具有相同的單調(diào)性;
(7)原函數(shù)為奇函數(shù),則其反函數(shù)仍為奇函數(shù);原函數(shù)為偶函數(shù),它一定不存在反函數(shù)。
如:求下列函數(shù)的反函數(shù): ; ;
七、常用的初等函數(shù):
(1)一元一次函數(shù): ,當 時,是增函數(shù);當 時,是減函數(shù);
(2)一元二次函數(shù):
一般式: ;對稱軸方程是 ;頂點為 ;
兩點式: ;對稱軸方程是 ;與 軸的交點為 ;
頂點式: ;對稱軸方程是 ;頂點為 ;
①一元二次函數(shù)的單調(diào)性:
當 時: 為增函數(shù); 為減函數(shù);當 時: 為增函數(shù); 為減函數(shù);
②二次函數(shù)求最值問題:首先要采用配方法,化為 的形式,
Ⅰ、若頂點的橫坐標在給定的區(qū)間上,則
時:在頂點處取得最小值,*值在距離對稱軸較遠的端點處取得;
時:在頂點處取得*值,最小值在距離對稱軸較遠的端點處取得;
Ⅱ、若頂點的橫坐標不在給定的區(qū)間上,則
時:最小值在距離對稱軸較近的端點處取得,*值在距離對稱軸較遠的端點處取得;
時:*值在距離對稱軸較近的端點處取得,最小值在距離對稱軸較遠的端點處取得;
有三個類型題型:
(1)頂點固定,區(qū)間也固定。如:
(2)頂點含參數(shù)(即頂點變動),區(qū)間固定,這時要討論頂點橫坐標何時在區(qū)間之內(nèi),何時在區(qū)間之外。
(3)頂點固定,區(qū)間變動,這時要討論區(qū)間中的參數(shù).
③二次方程實數(shù)根的分布問題: 設實系數(shù)一元二次方程 的兩根為 ;則:
根的情況
等價命題 在區(qū)間 上有兩根 在區(qū)間 上有兩根 在區(qū)間 或 上有一根
充要條件
注意:若在閉區(qū)間 討論方程 有實數(shù)解的情況,可先利用在開區(qū)間 上實根分布的情況,得出結(jié)果,在令 和 檢查端點的情況。
(3)反比例函數(shù):
(4)指數(shù)函數(shù):
指數(shù)運算法則: ; ; 。
指數(shù)函數(shù):y= (a>o,a≠1),圖象恒過點(0,1),單調(diào)性與a的值有關(guān),在解題中,往往要對a分a>1和0<a<1兩種情況進行討論,要能夠畫出函數(shù)圖象的簡圖。
(5)對數(shù)函數(shù):
指數(shù)運算法則: ; ; ;
對數(shù)函數(shù):y= (a>o,a≠1) 圖象恒過點(1,0),單調(diào)性與a的值有關(guān),在解題中,往往要對a分a>1和0<a<1兩種情況進行討論,要能夠畫出函數(shù)圖象的簡圖。
注意:(1) 與 的圖象關(guān)系是 ;
(2)比較兩個指數(shù)或?qū)?shù)的大小的基本方法是構(gòu)造相應的指數(shù)或?qū)?shù)函數(shù),若底數(shù)不相同時轉(zhuǎn)化為同底數(shù)的指數(shù)或?qū)?shù),還要注意與1比較或與0比較。
(3)已知函數(shù) 的定義域為 ,求 的取值范圍。
已知函數(shù) 的值域為 ,求 的取值范圍。
六、 的圖象:
定義域: ;值域: ; 奇偶性: ; 單調(diào)性: 是增函數(shù); 是減函數(shù)。
七、補充內(nèi)容:
抽象函數(shù)的性質(zhì)所對應的一些具體特殊函數(shù)模型:
① 正比例函數(shù)
② ; ;
③ ; ;
④ ;
三、導 數(shù)
1.求導法則:
(c)/=0 這里c是常數(shù)。即常數(shù)的導數(shù)值為0。
(xn)/=nxn-1 特別地:(x)/=1 (x-1)/= ( )/=-x-2 (f(x)±g(x))/= f/(x)±g/(x) (k?f(x))/= k?f/(x)
2.導數(shù)的幾何物理意義:
k=f/(x0)表示過曲線y=f(x)上的點P(x0,f(x0))的切線的斜率。
V=s/(t) 表示即時速度。a=v/(t) 表示加速度。
3.導數(shù)的應用:
①求切線的斜率。
②導數(shù)與函數(shù)的單調(diào)性的關(guān)系
一 與 為增函數(shù)的關(guān)系。
能推出 為增函數(shù),但反之不一定。如函數(shù) 在 上單調(diào)遞增,但 ,∴ 是 為增函數(shù)的充分不必要條件。
二 時, 與 為增函數(shù)的關(guān)系。
若將 的根作為分界點,因為規(guī)定 ,即摳去了分界點,此時 為增函數(shù),就一定有 。∴當 時, 是 為增函數(shù)的充分必要條件。
三 與 為增函數(shù)的關(guān)系。
為增函數(shù),一定可以推出 ,但反之不一定,因為 ,即為 或 。當函數(shù)在某個區(qū)間內(nèi)恒有 ,則 為常數(shù),函數(shù)不具有單調(diào)性。∴ 是 為增函數(shù)的必要不充分條件。
函數(shù)的單調(diào)性是函數(shù)一條重要性質(zhì),也是高中階段研究的重點,我們一定要把握好以上三個關(guān)系,用導數(shù)判斷好函數(shù)的單調(diào)性。因此新教材為解決單調(diào)區(qū)間的端點問題,都一律用開區(qū)間作為單調(diào)區(qū)間,避免討論以上問題,也簡化了問題。但在實際應用中還會遇到端點的討論問題,要謹慎處理。
四單調(diào)區(qū)間的求解過程,已知 (1)分析 的定義域;(2)求導數(shù) (3)解不等式 ,解集在定義域內(nèi)的部分為增區(qū)間(4)解不等式 ,解集在定義域內(nèi)的部分為減區(qū)間。
我們在應用導數(shù)判斷函數(shù)的單調(diào)性時一定要搞清以下三個關(guān)系,才能準確無誤地判斷函數(shù)的單調(diào)性。以下以增函數(shù)為例作簡單的分析,前提條件都是函數(shù) 在某個區(qū)間內(nèi)可導。
③求極值、求最值。
注意:極值≠最值。函數(shù)f(x)在區(qū)間[a,b]上的*值為極大值和f(a) 、f(b)中*的一個。最小值為極小值和f(a) 、f(b)中最小的一個。
f/(x0)=0不能得到當x=x0時,函數(shù)有極值。
但是,當x=x0時,函數(shù)有極值 f/(x0)=0
判斷極值,還需結(jié)合函數(shù)的單調(diào)性說明。
4.導數(shù)的常規(guī)問題:
(1)刻畫函數(shù)(比初等方法精確細微);
(2)同幾何中切線聯(lián)系(導數(shù)方法可用于研究平面曲線的切線);
(3)應用問題(初等方法往往技巧性要求較高,而導數(shù)方法顯得簡便)等關(guān)于 次多項式的導數(shù)問題屬于較難類型。
2.關(guān)于函數(shù)特征,最值問題較多,所以有必要專項討論,導數(shù)法求最值要比初等方法快捷簡便。
3.導數(shù)與解析幾何或函數(shù)圖象的混合問題是一種重要類型,也是高考*察綜合能力的一個方向,應引起注意。
四、不等式
一、不等式的基本性質(zhì):
注意:(1)特值法是判斷不等式命題是否成立的一種方法,此法尤其適用于不成立的命題。
(2)注意課本上的幾個性質(zhì),另外需要特別注意:
①若ab>0,則 。即不等式兩邊同號時,不等式兩邊取倒數(shù),不等號方向要改變。
②如果對不等式兩邊同時乘以一個代數(shù)式,要注意它的正負號,如果正負號未定,要注意分類討論。
③圖象法:利用有關(guān)函數(shù)的圖象(指數(shù)函數(shù)、對數(shù)函數(shù)、二次函數(shù)、三角函數(shù)的圖象),直接比較大小。
④中介值法:先把要比較的代數(shù)式與“0”比,與“1”比,然后再比較它們的大小
二、均值不等式:兩個數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)。
若 ,則 (當且僅當 時取等號)
基本變形:① ; ;
②若 ,則 ,
基本應用:①放縮,變形;
②求函數(shù)最值:注意:①一正二定三取等;②積定和小,和定積大。
當 (常數(shù)),當且僅當 時, ;
當 (常數(shù)),當且僅當 時, ;
常用的方法為:拆、湊、平方;
如:①函數(shù) 的最小值 。
②若正數(shù) 滿足 ,則 的最小值 。
三、*不等式:
注意:上述等號“=”成立的條件;
四、常用的基本不等式:
(1)設 ,則 (當且僅當 時取等號)
(2) (當且僅當 時取等號); (當且僅當 時取等號)
(3) ; ;
五、證明不等式常用方法:
(1)比較法:作差比較:
作差比較的步驟:
⑴作差:對要比較大小的兩個數(shù)(或式)作差。
⑵變形:對差進行因式分解或配方成幾個數(shù)(或式)的完全平方和。
⑶判斷差的符號:結(jié)合變形的結(jié)果及題設條件判斷差的符號。
注意:若兩個正數(shù)作差比較有困難,可以通過它們的平方差來比較大小。
(2)綜合法:由因?qū)Ч?
(3)分析法:執(zhí)果索因。基本步驟:要證……只需證……,只需證……
(4)反證法:正難則反。
(5)放縮法:將不等式一側(cè)適當?shù)姆糯蠡蚩s小以達證題目的。
放縮法的方法有:
⑴添加或舍去一些項,如: ;
⑵將分子或分母放大(或縮?。?
⑶利用基本不等式,如: ;
⑷利用常用結(jié)論:
Ⅰ、 ;
Ⅱ、 ; (程度大)
Ⅲ、 ; (程度?。?
(6)換元法:換元的目的就是減少不等式中變量,以使問題化難為易,化繁為簡,常用的換元有三角換元和代數(shù)換元。如:
已知 ,可設 ;
已知 ,可設 ( );
已知 ,可設 ;
已知 ,可設 ;
(7)構(gòu)造法:通過構(gòu)造函數(shù)、方程、數(shù)列、向量或不等式來證明不等式;
六、不等式的解法:
(1)一元一次不等式:
Ⅰ、 :⑴若 ,則 ;⑵若 ,則 ;
Ⅱ、 :⑴若 ,則 ;⑵若 ,則 ;
(2)一元二次不等式: 一元二次不等式二次項系數(shù)小于零的,同解變形為二次項系數(shù)大于零;注:要對 進行討論:
(5)*不等式:若 ,則 ; ;
注意:(1).幾何意義: : ; : ;
(2)解有關(guān)*的問題,考慮去*,去*的方法有:
⑴對*內(nèi)的部分按大于、等于、小于零進行討論去*;①若 則 ;②若 則 ;③若 則 ;
(3).通過兩邊平方去*;需要注意的是不等號兩邊為非負值。
(4).含有多個*符號的不等式可用“按零點分區(qū)間討論”的方法來解。
(6)分式不等式的解法:通解變形為整式不等式;
⑴ ;⑵ ;
⑶ ;⑷ ;
(7)不等式組的解法:分別求出不等式組中,每個不等式的解集,然后求其交集,即是這個不等式組的解集,在求交集中,通常把每個不等式的解集畫在同一條數(shù)軸上,取它們的公共部分。
(8)解含有參數(shù)的不等式:
解含參數(shù)的不等式時,首先應注意考察是否需要進行分類討論.如果遇到下述情況則一般需要討論:
①不等式兩端乘除一個含參數(shù)的式子時,則需討論這個式子的正、負、零性.
②在求解過程中,需要使用指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性時,則需對它們的底數(shù)進行討論.
③在解含有字母的一元二次不等式時,需要考慮相應的二次函數(shù)的開口方向,對應的一元二次方程根的狀況(有時要分析△),比較兩個根的大小,設根為 (或更多)但含參數(shù),要分 、 、 討論。
五、數(shù)列
本章是高考命題的主體內(nèi)容之一,應切實進行全面、深入地復習,并在此基礎(chǔ)上,突出解決下述幾個問題:(1)等差、等比數(shù)列的證明須用定義證明,值得注意的是,若給出一個數(shù)列的前 項和 ,則其通項為 若 滿足 則通項公式可寫成 .(2)數(shù)列計算是本章的中心內(nèi)容,利用等差數(shù)列和等比數(shù)列的通項公式、前 項和公式及其性質(zhì)熟練地進行計算,是高考命題重點考查的內(nèi)容.(3)解答有關(guān)數(shù)列問題時,經(jīng)常要運用各種數(shù)學思想.善于使用各種數(shù)學思想解答數(shù)列題,是我們復習應達到的目標. ①函數(shù)思想:等差等比數(shù)列的通項公式求和公式都可以看作是 的函數(shù),所以等差等比數(shù)列的某些問題可以化為函數(shù)問題求解.
②分類討論思想:用等比數(shù)列求和公式應分為 及 ;已知 求 時,也要進行分類;
③整體思想:在解數(shù)列問題時,應注意擺脫呆板使用公式求解的思維定勢,運用整
體思想求解.
(4)在解答有關(guān)的數(shù)列應用題時,要認真地進行分析,將實際問題抽象化,轉(zhuǎn)化為數(shù)學問題,再利用有關(guān)數(shù)列知識和方法來解決.解答此類應用題是數(shù)學能力的綜合運用,決不是簡單地模仿和套用所能完成的.特別注意與年份有關(guān)的等比數(shù)列的第幾項不要弄錯.
一、基本概念:
1、 數(shù)列的定義及表示方法:
2、 數(shù)列的項與項數(shù):
3、 有窮數(shù)列與無窮數(shù)列:
4、 遞增(減)、擺動、循環(huán)數(shù)列:
5、 數(shù)列{an}的通項公式an:
6、 數(shù)列的前n項和公式Sn:
7、 等差數(shù)列、公差d、等差數(shù)列的結(jié)構(gòu):
8、 等比數(shù)列、公比q、等比數(shù)列的結(jié)構(gòu):
二、基本公式:
9、一般數(shù)列的通項an與前n項和Sn的關(guān)系:an=
10、等差數(shù)列的通項公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1為首項、ak為已知的第k項) 當d≠0時,an是關(guān)于n的一次式;當d=0時,an是一個常數(shù)。
11、等差數(shù)列的前n項和公式:Sn= Sn= Sn=
當d≠0時,Sn是關(guān)于n的二次式且常數(shù)項為0;當d=0時(a1≠0),Sn=na1是關(guān)于n的正比例式。
12、等比數(shù)列的通項公式: an= a1 qn-1 an= ak qn-k
(其中a1為首項、ak為已知的第k項,an≠0)
13、等比數(shù)列的前n項和公式:當q=1時,Sn=n a1 (是關(guān)于n的正比例式);
當q≠1時,Sn= Sn=
三、有關(guān)等差、等比數(shù)列的結(jié)論
14、等差數(shù)列{an}的任意連續(xù)m項的和構(gòu)成的數(shù)列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍為等差數(shù)列。
15、等差數(shù)列{an}中,若m+n=p+q,則
16、等比數(shù)列{an}中,若m+n=p+q,則
17、等比數(shù)列{an}的任意連續(xù)m項的和構(gòu)成的數(shù)列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍為等比數(shù)列。
18、兩個等差數(shù)列{an}與{bn}的和差的數(shù)列{an+bn}、{an-bn}仍為等差數(shù)列。
19、兩個等比數(shù)列{an}與{bn}的積、商、倒數(shù)組成的數(shù)列
{an bn}、 、 仍為等比數(shù)列。
20、等差數(shù)列{an}的任意等距離的項構(gòu)成的數(shù)列仍為等差數(shù)列。
21、等比數(shù)列{an}的任意等距離的項構(gòu)成的數(shù)列仍為等比數(shù)列。
22、三個數(shù)成等差的設法:a-d,a,a+d;四個數(shù)成等差的設法:a-3d,a-d,,a+d,a+3d
23、三個數(shù)成等比的設法:a/q,a,aq;
四個數(shù)成等比的錯誤設法:a/q3,a/q,aq,aq3 (為什么?)
24、{an}為等差數(shù)列,則 (c>0)是等比數(shù)列。
25、{bn}(bn>0)是等比數(shù)列,則{logcbn} (c>0且c 1) 是等差數(shù)列。
26. 在等差數(shù)列 中:
(1)若項數(shù)為 ,則
(2)若數(shù)為 則, ,
27. 在等比數(shù)列 中:
(1) 若項數(shù)為 ,則
(2)若數(shù)為 則,
四、數(shù)列求和的常用方法:公式法、裂項相消法、錯位相減法、倒序相加法等。關(guān)鍵是找數(shù)列的通項結(jié)構(gòu)。
28、分組法求數(shù)列的和:如an=2n+3n
29、錯位相減法求和:如an=(2n-1)2n
30、裂項法求和:如an=1/n(n+1)
31、倒序相加法求和:如an=
32、求數(shù)列{an}的*、最小項的方法:
① an+1-an=…… 如an= -2n2+29n-3
② (an>0) 如an=
③ an=f(n) 研究函數(shù)f(n)的增減性 如an=
33、在等差數(shù)列 中,有關(guān)Sn 的最值問題——常用鄰項變號法求解:
(1)當 >0,d<0時,滿足 的項數(shù)m使得 取*值.
(2)當 <0,d>0時,滿足 的項數(shù)m使得 取最小值。
在解含*的數(shù)列最值問題時,注意轉(zhuǎn)化思想的應用。
六、平面向量
1.基本概念:
向量的定義、向量的模、零向量、單位向量、相反向量、共線向量、相等向量。
2. 加法與減法的代數(shù)運算:
(1) .
(2)若a=( ),b=( )則a b=( ).
向量加法與減法的幾何表示:平行四邊形法則、三角形法則。
以向量 = 、 = 為鄰邊作平行四邊形ABCD,則兩條對角線的向量 = + , = - , = -
且有| |-| |≤| |≤| |+| |.
向量加法有如下規(guī)律: + = + (交換律); +( +c)=( + )+c (結(jié)合律);
+0= +(- )=0.
3.實數(shù)與向量的積:實數(shù) 與向量 的積是一個向量。
(1)| |=| |·| |;
(2) 當 >0時, 與 的方向相同;當 <0時, 與 的方向相反;當 =0時, =0.
(3)若 =( ),則 · =( ).
兩個向量共線的充要條件:
(1) 向量b與非零向量 共線的充要條件是有且僅有一個實數(shù) ,使得b= .
(2) 若 =( ),b=( )則 ‖b .
平面向量基本定理:
若e1、e2是同一平面內(nèi)的兩個不共線向量,那么對于這一平面內(nèi)的任一向量 ,有且只有一對實數(shù) , ,使得 = e1+ e2.
4.P分有向線段 所成的比:
設P1、P2是直線 上兩個點,點P是 上不同于P1、P2的任意一點,則存在一個實數(shù) 使 = , 叫做點P分有向線段 所成的比。
當點P在線段 上時, >0;當點P在線段 或 的延長線上時, <0;
分點坐標公式:若 = ; 的坐標分別為( ),( ),( );則 ( ≠-1), 中點坐標公式: .
5. 向量的數(shù)量積:
(1).向量的夾角:
已知兩個非零向量 與b,作 = , =b,則∠AOB= ( )叫做向量 與b的夾角。
(2).兩個向量的數(shù)量積:
已知兩個非零向量 與b,它們的夾角為 ,則 ·b=| |·|b|cos .
其中|b|cos 稱為向量b在 方向上的投影.
(3).向量的數(shù)量積的性質(zhì):
若 =( ),b=( )則e· = ·e=| |cos (e為單位向量);
⊥b ·b=0 ( ,b為非零向量);| |= ;
cos = = .
(4) .向量的數(shù)量積的運算律:
·b=b· ;( )·b= ( ·b)= ·( b);( +b)·c= ·c+b·c.
6.主要思想與方法:
本章主要樹立數(shù)形轉(zhuǎn)化和結(jié)合的觀點,以數(shù)代形,以形觀數(shù),用代數(shù)的運算處理幾何問題,特別是處理向量的相關(guān)位置關(guān)系,正確運用共線向量和平面向量的基本定理,計算向量的模、兩點的距離、向量的夾角,判斷兩向量是否垂直等。由于向量是一新的工具,它往往會與三角函數(shù)、數(shù)列、不等式、解幾等結(jié)合起來進行綜合考查,是知識的交匯點。
七、立體幾何
1.平面的基本性質(zhì):掌握三個公理及推論,會說明共點、共線、共面問題。
能夠用斜二測法作圖。
2.空間兩條直線的位置關(guān)系:平行、相交、異面的概念;
會求異面直線所成的角和異面直線間的距離;證明兩條直線是異面直線一般用反證法。
3.直線與平面
①位置關(guān)系:平行、直線在平面內(nèi)、直線與平面相交。
②直線與平面平行的判斷方法及性質(zhì),判定定理是證明平行問題的依據(jù)。
③直線與平面垂直的證明方法有哪些?
④直線與平面所成的角:關(guān)鍵是找它在平面內(nèi)的射影,范圍是{00.900}
⑤三垂線定理及其逆定理:每年高考試題都要考查這個定理. 三垂線定理及其逆定理主要用于證明垂直關(guān)系與空間圖形的度量.如:證明異面直線垂直,確定二面角的平面角,確定點到直線的垂線.
4.平面與平面
(1)位置關(guān)系:平行、相交,(垂直是相交的一種特殊情況)
(2)掌握平面與平面平行的證明方法和性質(zhì)。
(3)掌握平面與平面垂直的證明方法和性質(zhì)定理。尤其是已知兩平面垂直,一般是依據(jù)性質(zhì)定理,可以證明線面垂直。
(4)兩平面間的距離問題→點到面的距離問題→
(5)二面角。二面角的平面交的作法及求法:
①定義法,一般要利用圖形的對稱性;一般在計算時要解斜三角形;
②垂線、斜線、射影法,一般要求平面的垂線好找,一般在計算時要解一個直角三角形。
③射影面積法,一般是二面交的兩個面只有一個公共點,兩個面的交線不容易找到時用此法?
具體的公式
高中數(shù)學公式大全
高中數(shù)學常用公式及常用結(jié)論
高中數(shù)學常用公式及常用結(jié)論
高中數(shù)學常用公式及常用結(jié)論
1. 元素與集合的關(guān)系
, .
2.德摩根公式
.
3.包含關(guān)系
4.容斥原理
.
5.集合 的子集個數(shù)共有 個;真子集有 –1個;非空子集有 –1個;非空的真子集有 –2個.
6.二次函數(shù)的解析式的三種形式
(1)一般式 ;
(2)頂點式 ;
(3)零點式 .
7.解連不等式 常有以下轉(zhuǎn)化形式
.
8.方程 在 上有且只有一個實根,與 不等價,前者是后者的一個必要而不是充分條件.特別地, 方程 有且只有一個實根在 內(nèi),等價于 ,或 且 ,或 且 .
9.閉區(qū)間上的二次函數(shù)的最值
二次函數(shù) 在閉區(qū)間 上的最值只能在 處及區(qū)間的兩端點處取得,具體如下:
(1)當a>0時,若 ,則 ;
, , .
(2)當a<0時,若 ,則 ,若 ,則 , .
10.一元二次方程的實根分布
依據(jù):若 ,則方程 在區(qū)間 內(nèi)至少有一個實根 .
設 ,則
(1)方程 在區(qū)間 內(nèi)有根的充要條件為 或 ;
(2)方程 在區(qū)間 內(nèi)有根的充要條件為 或 或 或 ;
(3)方程 在區(qū)間 內(nèi)有根的充要條件為 或 .
求高中數(shù)學所有公式
sin(-a)=-sin(a)
cos(-a)=cos(a)
sin(π2-a)=cos(a)
cos(π2-a)=sin(a)
sin(π2+a)=cos(a)
cos(π2+a)=-sin(a)
sin(π-a)=sin(a)
cos(π-a)=-cos(a)
sin(π+a)=-sin(a)
cos(π+a)=-cos(a)
2.兩角和與差的三角函數(shù)
sin(a+b)=sin(a)cos(b)+cos(α)sin(b)
cos(a+b)=cos(a)cos(b)-sin(a)sin(b)
sin(a-b)=sin(a)cos(b)-cos(a)sin(b)
cos(a-b)=cos(a)cos(b)+sin(a)sin(b)
tan(a+b)=tan(a)+tan(b)1-tan(a)tan(b)
tan(a-b)=tan(a)-tan(b)1+tan(a)tan(b)
3.和差化積公式
sin(a)+sin(b)=2sin(a+b2)cos(a-b2)
sin(a)?sin(b)=2cos(a+b2)sin(a-b2)
cos(a)+cos(b)=2cos(a+b2)cos(a-b2)
cos(a)-cos(b)=-2sin(a+b2)sin(a-b2)
4.二倍角公式
sin(2a)=2sin(a)cos(b)
cos(2a)=cos2(a)-sin2(a)=2cos2(a)-1=1-2sin2(a)
5.半角公式
sin2(a2)=1-cos(a)2
cos2(a2)=1+cos(a)2
tan(a2)=1-cos(a)sin(a)=sina1+cos(a)
6.萬能公式
sin(a)=2tan(a2)1+tan2(a2)
cos(a)=1-tan2(a2)1+tan2(a2)
tan(a)=2tan(a2)1-tan2(a2)
7.其它公式(推導出來的 )
a?sin(a)+b?cos(a)=a2+b2sin(a+c) 其中 tan(c)=ba
a?sin(a)+b?cos(a)=a2+b2cos(a-c) 其中 tan(c)=ab
1+sin(a)=(sin(a2)+cos(a2))2
1-sin(a)=(sin(a2)-cos(a2))2 乘法與因式分解
a^2-b^2=(a+b)(a-b)
a^3+b^3=(a+b)(a^2-ab+b^2)
a^3-b^3=(a-b(a^2+ab+b^2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b^2-4ac)/2a -b-√(b^2-4ac)/2a
根與系數(shù)的關(guān)系 X1+X2=-b/a X1*X2=c/a 注:韋達定理
判別式
b^2-4ac=0 注:方程有兩個相等的實根
b^2-4ac>0 注:方程有兩個不等的實根
b^2-4ac<0 注:方程沒有實根,有共軛復數(shù)根
三角函數(shù)公式
兩角和公式
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
cot(A+B)=(cotAcotB-1)/(cotB+cotA)
cot(A-B)=(cotAcotB+1)/(cotB-cotA)
倍角公式
tan2A=2tanA/[1-(tanA)^2]
cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2
半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))
和差化積
2sinAcosB=sin(A+B)+sin(A-B)
2cosAsinB=sin(A+B)-sin(A-B) )
2cosAcosB=cos(A+B)-sin(A-B)
-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2
cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB
某些數(shù)列前n項和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2
1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 5
1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6
1^3+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/4
1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圓半徑
余弦定理 b^2=a^2+c^2-2accosB 注:角B是邊a和邊c的夾角
圓的標準方程 (x-a)^2+(y-b)^2=^r2 注:(a,b)是圓心坐標
圓的一般方程 x^2+y^2+Dx+Ey+F=0 注:D^2+E^2-4F>0
拋物線標準方程 y^2=2px y^2=-2px x^2=2py x^2=-2py
直棱柱側(cè)面積 S=c*h 斜棱柱側(cè)面積 S=c'*h
正棱錐側(cè)面積 S=1/2c*h' 正棱臺側(cè)面積 S=1/2(c+c')h'
圓臺側(cè)面積 S=1/2(c+c')l=pi(R+r)l 球的表面積 S=4pi*r2
圓柱側(cè)面積 S=c*h=2pi*h 圓錐側(cè)面積 S=1/2*c*l=pi*r*l
弧長公式 l=a*r a是圓心角的弧度數(shù)r >0 扇形面積公式 s=1/2*l*r
錐體體積公式 V=1/3*S*H 圓錐體體積公式 V=1/3*pi*r2h
斜棱柱體積 V=S'L 注:其中,S'是直截面面積, L是側(cè)棱長
柱體體積公式 V=s*h 圓柱體 V=pi*r2h
定理:
1 過兩點有且只有一條直線
2 兩點之間線段最短
3 同角或等角的補角相等
4 同角或等角的余角相等
5 過一點有且只有一條直線和已知直線垂直
6 直線外一點與直線上各點連接的所有線段中,垂線段最短
7 平行公理 經(jīng)過直線外一點,有且只有一條直線與這條直線平行
8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9 同位角相等,兩直線平行
10 內(nèi)錯角相等,兩直線平行
11 同旁內(nèi)角互補,兩直線平行
12兩直線平行,同位角相等
13 兩直線平行,內(nèi)錯角相等
14 兩直線平行,同旁內(nèi)角互補
15 定理 三角形兩邊的和大于第三邊
16 推論 三角形兩邊的差小于第三邊
17 三角形內(nèi)角和定理 三角形三個內(nèi)角的和等于180°
18 推論1 直角三角形的兩個銳角互余
19 推論2 三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和
20 推論3 三角形的一個外角大于任何一個和它不相鄰的內(nèi)角
21 全等三角形的對應邊、對應角相等
22邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等
作者:塵世的Angel 2008-11-22 22:48 回復此發(fā)言
--------------------------------------------------------------------------------
2 高中數(shù)學公式
23 角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個三角形全等
24 推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等
25 邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等
26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等
27 定理1 在角的平分線上的點到這個角的兩邊的距離相等
28 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上
29 角的平分線是到角的兩邊距離相等的所有點的集合
30 等腰三角形的性質(zhì)定理 等腰三角形的兩個底角相等 (即等邊對等角)
31 推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊
32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33 推論3 等邊三角形的各角都相等,并且每一個角都等于60°
34 等腰三角形的判定定理 如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)
35 推論1 三個角都相等的三角形是等邊三角形
36 推論 2 有一個角等于60°的等腰三角形是等邊三角形
37 在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半
38 直角三角形斜邊上的中線等于斜邊上的一半
39 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等
40 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42 定理1 關(guān)于某條直線對稱的兩個圖形是全等形
43 定理 2 如果兩個圖形關(guān)于某直線對稱,那么對稱軸是對應點連線的垂直平分線
44定理3 兩個圖形關(guān)于某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上
45逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱
46勾股定理 直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^2
47勾股定理的逆定理 如果三角形的三邊長a、b、c有關(guān)系a^2+b^2=c^2 ,那么這個三角形是直角三角形
48定理 四邊形的內(nèi)角和等于360°
49四邊形的外角和等于360°
50多邊形內(nèi)角和定理 n邊形的內(nèi)角的和等于(n-2)×180°
51推論 任意多邊的外角和等于360°
52平行四邊形性質(zhì)定理1 平行四邊形的對角相等
53平行四邊形性質(zhì)定理2 平行四邊形的對邊相等
54推論 夾在兩條平行線間的平行線段相等
55平行四邊形性質(zhì)定理3 平行四邊形的對角線互相平分
56平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形
57平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形
58平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形
59平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形
60矩形性質(zhì)定理1 矩形的四個角都是直角
61矩形性質(zhì)定理2 矩形的對角線相等
62矩形判定定理1 有三個角是直角的四邊形是矩形
63矩形判定定理2 對角線相等的平行四邊形是矩形
64菱形性質(zhì)定理1 菱形的四條邊都相等
65菱形性質(zhì)定理2 菱形的對角線互相垂直,并且每一條對角線平分一組對角
66菱形面積=對角線乘積的一半,即S=(a×b)÷2
67菱形判定定理1 四邊都相等的四邊形是菱形
68菱形判定定理2 對角線互相垂直的平行四邊形是菱形
69正方形性質(zhì)定理1 正方形的四個角都是直角,四條邊都相等
70正方形性質(zhì)定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角
71定理1 關(guān)于中心對稱的兩個圖形是全等的
72定理2 關(guān)于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分
73逆定理 如果兩個圖形的對應點連線都經(jīng)過某一點,并且被這一 點平分,那么這兩個圖形關(guān)于這一點對稱
74等腰梯形性質(zhì)定理 等腰梯形在同一底上的兩個角相等
75等腰梯形的兩條對角線相等
76等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形